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Summary of the subject (maximum 1 page): 
 
Understanding the behavior of plasmonic nanostructures with complex geometries or 
nanoparticles assemblies is crucial for a wide range of fields, including sensing, catalysis or 
nanotherapies. In this proposal, we focus on isolated and clustered gold and gold-cobalt 
nanodomes covering polystyrene nanospheres which are structures showing low symmetry, 
sharp irregular rims and metal thickness gradients.  
 
The plasmonic response of nanostructures of almost any possible shape has been vastly studied 
because of their superior light confinement capacity 1–4. The outstanding optoelectronic 
properties of plasmonic nanostructures make them suitable for a wide range of applications, 
especially for life sciences, e. g., cancer treatment, drug delivery, improvement of 
optoelectronic devices 5–9, among others. Interestingly, nanoplasmonics has led to a major 
change in the biosensing field 10–12 owing to the possibility of merging size reduction, high 
sensitivity and spectral tunability by simply controlling the size and shape of the sensing 
structure. To achieve optimized plasmonic structures for each application through the tailored 
interaction with the electromagnetic fields, a huge number of simple and complex shapes have 
been investigated. However, for complex nanostructures the understanding and the prediction 
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of their interaction with the incident light can be difficult. This often hinders the development 
of optimized structures or leads to lengthy trial-and-error processes.  
 
In this work, we want to study the surface plasmons of gold and cobalt-gold nanodomes through 
the Electron Energy Loss Spectroscopy (EELS), which is a spectroscopic technique carry out 
in Scanning Transmission Electron Microscopes. In EEL spectra, the surface plasmonic 
responses are located at the low-loss region of them, i.e., the part of the spectrum where the 
electrons have small energy-losses in the range up to ~50 eV. In particular, these isolated gold 
and cobalt-gold nanodomes, exhibit a plasmonic resonances at 1.5 eV and 2.4 eV.  
 
Electron Energy Loss Spectroscopy offers high spatial and energy resolutions; thus, it is a 
convenient and suitable technique to characterize surface plasmons in nanostructures, as these 
nanodomes. However, dealing with the large amount of data acquired by each observation (i.e., 
spectrum image from a single nanodome) and the presences of an intense Zero Loss Peak near 
the plasmon peaks are still challenges to characterized plasmons. For that reason, in this work 
we propose to apply machine learning strategies to identify plasmonic peaks in a 
straightforward and automated way. Recently, the EELS community has deeply explored these 
strategies for analyzing the core-loss region of EEL spectra, the spectrum region corresponding 
to higher energy losses. In this sense, they have successfully applied Support Vector Machines, 
Neural Networks, clustering, and dimensional reduction techniques for analyzing core-loss 
features 13–16.   
 
Objectives: 
 
The main objective of this work is to find machine learning strategies to simplify and speed up 
the analysis of plasmon peaks in EEL spectra; and the final objective is to find a recipe to 
automatically characterize plasmonic resonances in EEL spectrum images.  
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